Kamis, 01 November 2012

REAKSI OKSIDASIPADA ALKENA DAN REAKSI ASAM BASA PADASENYAWA AMINA

OKSIDASI ALKENA
1. oksidasi dengan kalium manganat

Alkena bereaksi dengan larutan kalium manganat(VII) dalam suasana dingin. Perubahan warna tergantung pada apakah kalium manganat(VII) digunakan dalam kondisi asam atau basa.

Jika larutan kalium manganat(VII) diasamkan dengan asam sulfat encer, maka larutan akan berubah warna dari ungu menjadi tidak berwarna.

Jika larutan kalium manganat(VII) dijadikan sedikit bersifat basa (biasanya dengan menambahkan larutan natrium karbonat), larutan ungu pertama-tama berubah menjadi hijau tua dan selanjutnya menghasilkan endapan berwarna coklat gelap.

Apabila alkena dioksidasi, maka kemungkinan produk yang dihasilkan adalah alkohol, aldehid, keton, atau asam karboksilat. Semua tergantung suhu dan suasana serta struktur alkena sendiri. Terdapat dua suasana yang memberikan produk yang berbeda. Dalam suasana basa, apabila alkena dioksidasi, akan membentuk diol. Sedangkan dalam suasana asam, akan menghasilkan 2 zat yang terpisah karena terjadi pemutusan ikatan. Biasanya berupa aldehid. Sedangkan untuk KMnO4 (Berwarna Ungu) sendiri, dalam suasana basa akan membentuk endapan Mangan(IV) oksida (MnO2) berwarna coklat. Sedangkan dalam suasana asam akan membentuk larutan Mn2+ yang tidak berwarna.


Sifat kimia reaksi

Kita akan melihat reaksi dengan etena. Alkena-alkena yang lain bereaksi persis sama dengan etena.

Ion-ion manganat(VII) merupakan agen pengoksidasi kuat, dan etena dioksidasi menjadi etana-1,2-diol (nama lama: etilen glikol).

Jika persamaan reaksinya ditinjau murni dari sudut pandang reaksi organik, maka dapat dituliskan:



Persamaan reaksi lengkapnya tergantung pada kondisi-kondisi reaksi.

Dibawah kondisi asam, ion-ion manganat(VII) direduksi menjadi ion-ion mangan(II).



Dibawah kondisi basa, ion-ion manganat(VII) pertama-tama direduksi menjadi ion-ion manganat(VI) yang berwarna hijau sesuai persamaan berikut:



dan selanjutnya direduksi menjadi padatan mangan(IV) oksida yang berwarna coklat gelap (mangan oksida).



Reaksi yang terakhir ini juga merupakan reaksi yang akan terjadi apabila reaksi berlangsung pada kondisi netral. Hanya saja tidak ditemukan lagi adanya ion hidrogen atau ion hidroksida pada sebelah kiri persamaan reaksi.

Komplikasi-komplikasi

Produk yang terbentuk dari reaksi antara etena dengan Kalium Manganat(VII), yakni etana-1,2-diol, agak mudah dioksidasi oleh ion-ion manganat(VII), sehingga reaksi tidak akan terhenti setelah produk ini dihasilkan sebelum larutan kalium manganat(VII) sangat encer, sangat dingin, dan tidak pada kondisi asam.

Ini berarti bahwa reaksi ini tidak terlalu bermanfaat untuk digunakan dalam pembuatan etana-1,2-diol. Reaksi ini hanya bermanfaat dalam pengujian ikatan karbon-karbon rangkap – meski tidak begitu bagus!

Penggunaan reaksi etena dengan kalium manganat(VII) untuk menguji keberadaan ikatan C=C

Jika sebuah senyawa organik bereaksi dengan kalium manganat(VII) basa yang encer menghasilkan larutan hijau yang diikuti dengan endapan coklat gelap, maka senyawa organik tersebut kemungkinan mengandung sebuah ikatan rangkap C=C. Akan tetapi, senyawa organik tersebut bisa jadi salah satu dari banyak senyawa lain yang semua kandungannya bisa dioksidasi oleh ion-ion manganat(VII) dibawah kondisi basa.

Apabila larutan kalium manganat(VII) dalam kondisi asam maka situasinya lebih buruk lagi karena larutan ini memiliki kecenderungan untuk memutus ikatan karbon-karbon. Larutan ini bereaksi keras dengan berbagai senyawa organik dan jarang digunakan dalam kimia organik.

Anda dapat menggunakan larutan kalium manganat(VII) basa untuk menguji keberadaan ikatan C=C jika, misalnya, anda hanya ingin menentukan apakah sebuah hidrokarbon adalah alkana atau alkena – dengan kata lain, jika tidak ada lagi zat lain di dalamnya yang bisa dioksidasi.

Reaksi uji ini tidak begitu bermanfaat. Penggunaan air bromin jauh lebih jelas hasilnya.


2. Oksidasi dengan Ozonolisis

Untuk reaksi ozonolisis, pasti akan terjadi pemutusan rantai. Reaksi ini dibagi menjadi 2, yaitu ozonolisis reduktif dan oksidatif.

Contoh reaksi:


Dari gambar diatas, dapat kita simpulkan untuk reaksi ozonolisis reduktif (Zn, H2O) akan menghasilkan produk hingga tingkat karbonil saja (Aldehid dan Keton) sedangkan untuk reaksi ozonolisis oksidatif (H2O2) akan menghasilkan produk hingga tingkat asam karboksilat jika memungkinkan.

Sebagai tambahan, perlu anda ketahui bahwa ozon adalah zat reaktif yang bersifat karsogenik.






REAKSI ASAM BASA PADA SENYAWA AMINA

Amina

1. Pengertian
Amina adalah senyawa organic yang mengandung atom nitrogen trivalent yang mengandung atom nitrogen trivalen yang berkaitan dengan satu atau dua atau tiga atom karbon, dimana amina juga merupakan suatu senyawa yang mengandung gugusan amino (-NH2, - NHR, atau – NH2). Gugusan amino mengandung nitrogen terikat, kepada satu sampai tiga atom karbon (tetapi bukan gugusan karbonil). Apabila salah satu karbon yang terikat pada atom nitrogen adalah karbonil, senyawanya adalah amida, bukan amina.

Amina merupakan senyawa organik dan gugus fungsional yang isinya terdiri dari senyawa nitrogen atom dengan pasangan sendiri. Amino merupakan derivatif amoniak. Biasanya dipanggil amida dan memiliki berbagai kimia yang berbeda. Yang termasuk amina ialah asam amino, amino biogenik, trimetilamina, dan anilina.

Yang berbau dari amoniak, ialah ikan tua, air kencing, rotting daging, dan mani merupakan semua terdiri dari zat amino.

2. Ciri Khas
Di antara sejumlah golongan senyawa organic yang memiliki sifat basa, yang terpenting adalah amina. Di samping itu sejumlah amina memiliki keaktifan faali (fisiologis), misalnya efedrina berkhasiat sebagai peluruh dahak, meskalina yang dapat mengakibatkan seseorang berhalusinasi, dan amfetamina yang mempunyai efek stimulant. Kelompok senyawa alkaloid yang berasal dari tumbuhan secara kimia juga meripakan bagian dari golongan basa organic amina.
3. Runus Umum
Rumus umum untuk senyawa amina adalah :
¨ ¨
RNH2 R2NH R3N:

Dimana R dapat berupa alkil atau ari
B. Struktur
Amina merupakan senyawa organik yang terpenting dalam kehidupan sehari-hari dan memiliki urutan yang paling penting dalam senyawa organik, oleh karena itu amina tidak terlepas dari semua unsur organik yang lain. Oleh karena itu sifat-sifat yang di pelajari dalam senyawa amina akan sangat membantu dalam memahami aspek kimiawi kelompok alkoid yang mempunyai peran pentig dalam pembuatan obat-obat sinetik dewasa ini.

Senyawa Amina  :
Amina Primer

Amina primer mengandung -NH2 terikat pada rantai atau cincin hidrokarbon. Anda dapat pikirkan amina sebagai turunan dari ammonia , NH3. Dalam amina primer, salah satu dari hidrogen diganti oleh hidrokarbon.

Contoh 1: Tuliskan struktur formula dari etilamin.

Dalam kasus ini, etil terikat pada -NH2 .

Nama ini (etilamin) tidak ada masalah selama tidak ada makna ambigu dari letak -NH2 . Namun seumpama anda mempunyai karbon rantai 3 -dalam kasus ini -NH2 bisa berada pada kedua ujung atau ditengah.

Contoh 2: Tuliskan struktur foemula untuk 2-aminopropan.


Nama menunjukkan rantai tiga karbon dengan amino terikat pada karbon ke dua. Amino menunjukkan -NH2 .

Etilamin (contoh1) bisa juga disebut sebagai aminoetan.



Amina Sekunder dan Tertier

Dalam amina sekunder dua dari hidrogen atom pada amonia digantikan dengan hidrokarbon. dan tiga hidrogen digantikan pada amina tertier.

Contoh 1: Tuliskan struktur formula untuk dimetilamine.

Dalam kasus ini dua atom hidrogen digantikan dengan metil.


Contoh 2: Tuliskan stuktur formula untuk trimetilamin.

Disini ada tiga hidrogen pada amonia yang digantikan dengan metil.


C. Tata Nama
Tata Nama IUPAC (Sistematik)
Nama sistematik untuk amina alifatik primer diberikan dengan cara seperti nama sistematik alkohol, monohidroksi akhiran –a dalam nama alkana induknya diganti oleh kata amina
Contoh :

CH3- CH-CH3 2-propanamina

NH2

CH3-CH2-CH-CH2-CH3 3-pentanamina

NH 3

Untuk amina sekunder dan tersier yang asimetrik (gugus yang terikat pada atom N tidak sama), lazimnya diberi nama dengan menganggapnya sebagai amina primer yang tersubtitusi pada atom N. Dalam hal ini berlaku ketentuan bahwa gugus sustituen yang lebih besar dianggap sebagai amina induk, sedangkan gugus subtituen yang lebih kecil lokasinya ditunjukkan dengan cara menggunakan awalan N (yang berarti terikat pada atom N)
Contoh :

CH3
N

CH3
N3N-dimetilsikopentamina

Tata Nama Trivial
Nama trivial untuk sebagian besar amina adalah dengan menyebutkan gugus-gugus alkil/aril yang terikat pada atom N dengan ketentuan bahwa urutan penulisannya harus memperhatikan urutan abjad huruf terdepan dalam nama gugus alkil/aril kemudian ditambahkan kata amina di belakang nama gugus-gugus tersebut
Contoh : CH3


CH3——NH2 CH — C — NH2

CH3
Metilamina tersier-butilamina

D. Klasifikasi
Amina digolongkan menjadi amina primer (RNH2), sekunder (R2NH), atau tersier (R3N), tergantung kepada jumlah atom karbon yang terikat pada atom nitrogen (bukan pada atom karbon, seperti pada alkohol)
Beberapa (10) Amin Primer (suatu karbon Terikat kepada N)
CH3

CH3NH2 CH3 C NH2 NH2

CH3

Beberapa (20) Amin sekunder (Dua Korbon terikat kepadaN)

CH3 — NH — CH3 NHCH3
N
H
Beberapa (30) Amin Tersier (Tiga karbon Terkait kepada N):
CH
CH3 — N — CH3 N
CH3 N
CH3
E. Sifat-Sifat Amina
1. Sifat Kimia
Kebasaan
Seperti halnya amonia, semua amina bersifat sebagai basa lemah dan larutan amina dalam air bersifat basis
Contoh : H

CH3—N: + H – O- H CH3- N- H + HO


H Metilamonium hidroksida
[CH3NH3][HO]
Kb = ———————— = 4,37 × 10-4
[CH3NH2]

Harga pKb untuk CH3NH2 = - log Kb = 3,36

Untuk menelaah kebasaan suatu amina, sering kali digunakan acuan tetapan ionisasi konjugatnya (Ka). Untuk asam konjugat dari CH3NH2 yaitu CH3NH3+ harga tetapan ionisasi asamnya adalah :
CH3NH3+ CH3NH2 + H+

[CH3NH2][H+]
Ka = = 4,37x10
[CH3NH3+]

Harga pKa untuk CH3NH3+ = -log Ka = 10,64

Harga pKa dan pKb untuk pasangan asam basa konjugat dinyatakan dengan persamaan: pKa + pKb =14

Reaksi Amina dngan Asam
Amina yang larut maupun yang tidak larut dalam air dapat bereaksi dengan asam dan menghasylkan garam yang larut dalam air.

Contoh :
(CH3CH2)2NH + HCl → (CH3CH2)2NH2+Cl-

dietilamonium klorida
2. Sifat Fisik
Contoh :
H H
│ │
ROH—:OR R2NH —:NR2
¨
5 kcal/mol 3kcal/mol
Titik didih dari amina yang mengandung suatu ikatan N—H adalah ditengah-tengah antara alkana (tidak ada ikatan hidrogen) dan alcohol (ikatan alcohol kuat)
CH3CH2CH3 CH3CH2NH2 CH3CH2OH
propana Etilamina Etanol
Berat rumus : 44 45 46
Titik didh (°C): -42 17 78,5
Titik didih dari amina yang tidak mengandung ikatan N—H, jadi tidak mempunyai ikatan hidrogen, lebih rendah dari amina yang mempunyai ikatan hidrogen.
F. Reaksi-Reaksi Amina
Reaksi Amina dengan Asam Nitrit
1. Amina alifatik primer dengan HNO2 menghasilkanalkohol disertai pembebasan gas N2 menurut persamaan reaksi di bawah ini :
CH3-CH-NH2 + HNO2→ CH3-CH-OH + N2 + H2O
│ │
CH3 CH3
Isopropilamina (amina 1°) isopropil alkohol (alkohol 2°)
2. Amina alifatik/aromatik sekunder dengan HNO2 menghasilkan senyawa N-nitrosoamina yang mengandung unsur N-N=O
Contoh :

H N=O

N + HNO2 → N + H2O

CH3 CH3
N-metilanilina N-metilnitrosoanilina

3. Amina alifatik/aromatik dengan HNO2 memberikan hasil reaksi yang ditentukkan oleh jenus amina tersier yang digunakan. Pada amina alifatik/aromatik tersier reaksinya dengan HNO2 mengakibatkan terjadinya sustitusi cincin aromatik oleh gugus –NO seperti contoh dibawah ini

CH3 CH2
N + HNO2 → N + H2O

CH3 CH3
N,N-dietilanilina p-nitroso –N,N- dimetilanilina

4. Amina aromatik primer jika direaksikan dengan HNO2 pada suhu 0°C menghasilkan garam diazonium

Contoh :
+
NH2 + HNO2 + HCl N= : Cl + 2H2O

Anilina benzenadiaazonium klorida
Reaksi Amina dengan Asam
Contoh :
(CH3CH2)2NH + HCl (CH3CH2)2NH+Cl-
Dietilamonium klorida
G. Pembuatan Amina
Ada dua jalan umumuntuk pembentukan amina yaitu subtitusi dan reduksi.
Reaksi Subtitusi dari Alkil Halida
Ammonia dan mengandung pasangan elektron sunyi pada atom nitrogen, oleh sebab itu, senyawa itu dapatbertindak sebagai nukleofil dalm reaksi subtitusi nukleofilik dari alkil halida. Reaksi dengan amonia menghasilkan garam dari amin primer. Bila garam amina ini direaksikan dengan basa akan dibebaskan amina bebas.
Reaksi alkil halida dengan amina dan bukan amonia akan menghasilkan amin sekunder, tersier, atau garam amonium kuarterner, tergantung pada amina yang digunakan. +
CH3CH2Br + CH3CH2 CH3CH2NH2CH3 Br - - OH CH3CH2NH2CH3

10 amina 20 amina
+
CH3CH2Br + (CH3)2 NH CH3CH2NH2 (CH3)2 Br - - OH
20 amina

CH3CH2N(CH3)2
30 amina

CH3CH2Br + (CH3)3 N CH3CH2N(CH3)2
Reaksi Reduksi dari Senyawa Nitrogen lain
Reduksi dari amida atau nitril dengan litium aluminium hidrida atau dengan gas hidrogen (hidrogenasi katalitik) menghasilkan amina. Dengan amida, amin primer, sekunder, atau tersier bisa didapat, tergantung kepada jumlah substitusi pada amida nitrogen.
Amida yang disubtitusi

CH3CH2CH2 —C N CH3CH2CH2- CH2NH2
pertanyaan :
  1. apabila alkena dioksidasi dengan kalium permangat  pada suhu dingin maka yang dihasilkan adalah senyawa keton , asam karboksilat ,aldehid dan alkohol . Lalu bagaiman jika alkena dioksidasi dalam suasana panas , apakah keempat senyawa tersebut masih dihasilkan atau adakah senyawa yg dihasilkan selain dari yang ke empat senywa tersebut ???
2.  alkaloid adalah senyawa yang mengandung nitrogen yang bersifat basa dari tumbuhan atau hewan , salah satu penghasil alkaloid yang berarti adalah katak beracun .Katak ini mensekresikan alkaloid beracun dari permukaan kulitnya . yang paling beracun dari sekresi ini adalah batrakotoksin , bagaimana proses terjadinya batrakotoksin dalam sekresi permukaan kulit katak sehingga bisa menghasilkan senyawa yang alkaloid yang sangat beracun sementarabiasanya alkaloid digunakan untuk bahan obat- obatan . bagaimana struktur amina dalam btrakotoksin tersebut ???




Kamis, 18 Oktober 2012

REAKSI HALOGENASI ALKANA

Halogenasi Alkana dan Sikloalkana



Alkana
Reaksi dari alkana dengan unsur-unsur halogen disebut reaksi halogenasi. Reaksi ini akan menghasilkan senyawa alkil halida, dimana atom hidrogen dari alkana akan disubstitusi oleh halogen sehingga reaksi ini bisa disebut reaksi substitusi.
Halogenasi biasanya menggunakan klor dan brom sehingga disebut juga klorinasi dan brominasi. Halongen lain, fluor bereaksi secara eksplosif dengan senyawa organik sedangkan iodium tak cukup reaktif untuk dapat bereaksi dengan alkana.
Laju pergantian atom H sebagai berikut H3 > H2 > H1. Kereaktifan halogen dalam mensubtitusi H yakni fluorin > klorin > brom > iodin.
Reaksi antara alkana dengan fluorin menimbulkan ledakan (eksplosif) bahkan pada suhu dingin dan ruang gelap.
clip_image003
Jika campuran alkana dan gas klor disimpan pada suhu rendah dalam keadaan gelap, reaksi tidak berlangsung. Jika campuran tersebut dalam kondisi suhu tinggi atau di bawah sinar UV, maka akan terjadi reaksi yang eksoterm. Reaksi kimia dengan bantuan cahaya disebut reaksi fitokimia.
Dalam reaksi klorinasi, satu atau lebih bahkan semua atom hidrogen diganti oleh atom halogen. Contoh reaksi halogen dan klorinasi secara umum digambarkan sebagai berikut:
clip_image005

Reaksi antara alkana dengan fluorin
Reaksi ini menimbulkan ledakan (eksplosif) bahkan pada suhu dingin dan ruang gelap, dan cenderung dihasilkan karbon dan hidrogen fluoride. Tidak ada yang istimewa pada reaksi ini. Sebagai contoh:

Reaksi antara alkana dengan iodin
Iodin tidak bereaksi dengan alkana – sekurang-kurangnya pada kondisi laboratorium yang normal.
Reaksi antara alkana dengan klorin atau bromin
Tidak ada reaksi yang terjadi dalam kondisi gelap (tanpa cahaya).
Jika terdapat cahaya, reaksi yang terjadi sedikit mirip dengan fluorin, yakni menghasilkan sebuah campuran karbon dan hidrogen halida. Keagresifan reaksi berkurang tajam semakin ke bawah golongan mulai dari fluorin sampai klorin sampai bromin.
Reaksi-reaksi yang menarik terjadi dengan adanya sinar ultraviolet (begitu juga sinar matahari). Reaksi-reaksi ini disebut reaksi fitokimia, dan terjadi pada suhu kamar.
Berikut kita akan melihat reaksi dengan klorin. Reaksi dengan bromin cukup mirip, hanya saja sedikit lebih lambat.
Metana dan klorin
Reaksi substitusi terjadi dengan mekanisme dimana atom-atom hidrogen dalam metana digantikan oleh atom-atom klorin. Hasil reaksi adalah campuran klorometana, diklorometana, triklorometana dan tetraklorometana.

Campuran antara gas tidak berwarna dengan sebuah gas berwarna hijau ini akan menghasilkan hidrogen klorida dalam bentuk uap asap dan kabut cairan-cairan organik. Semua produk organik berbentuk cair dalam suhu kamar terkecuali klorometana yang merupakan sebuah gas.
Jika klorin diganti dengan bromin, anda bisa mencampur metana dengan uap bromin, atau menggelembungkan metana melalui cairan bromin – paparkan kedua prosedur ini terhadap sinar UV. Campuran gas yang terbentuk akan berwarna merah-coklat dan bukan hijau.
Reaksi-reaksi ini tidak bisa digunakan untuk membuat senyawa-senyawa organik yang dihasilkan dalam laboratorium karena campuran hasil reaksinya sangat sulit dipisahkan.
Mekanisme dari reaksi-reaksi ini akan dijelaskan pada halaman yang lain.
Reaksi alkana-alkana yang lebih besar dengan klorin
Reaksi ini lagi-lagi akan menghasilkan campuran produk-produk substitusi, tapi kita hanya akan melihat secara ringkas apa yang terjadi jika hanya satu atom hidrogen yang tersubstitusi (monosubstitusi) – sekedar untuk menunjukkan bahwa mekanisme yang terjadi tidak selamanya sederhana sebagaimana yang dipahami.
Sebagai contoh, dengan propana, akan diperoleh salah satu dari dua isomer berikut:
Jika salah satu dari dua isomer yang terbentuk ini hanya secara kebetulan tanpa ada faktor lain, maka bisa diperoleh jumlah isomer yang tiga kali lebih banyak dengan klorin pada atom karbon ujung. Ada 6 hidrogen yang bisa terganti pada atom-atom karbon ujung dan hanya 2 pada atom karbon tengah.
Sebenarnya, jumlah setiap dari dua isomer ini yang diperoleh hampir sama.
Jika digunakan bromin, kebanyakan hasil reaksi adalah isomer dimana bromin terikat pada atom karbon tengah, bukan pada atom karbon ujung.
Penyebab terjadinya mekanisme ini akan dibahas pada pembahasan yang lain.
Sikloalkana
Reaksi sikloalkana pada umumnya hampir sama dengan alkana, kecuali untuk sikloalkana yang sangat kecil – khususnya siklopropana.
Kereaktifan tambahan siklopropana
Dibawah sinar UV, siklopropana akan mengalami reaksi substitusi dengan klorin atau bromin tepat seperti yang dialami alkana non-siklik. Akan tetapi, sikloalkana juga memiliki kemampuan untuk bereaksi dalam kondisi tanpa cahaya.
Dengan adanya sinar UV, siklopropana bisa mengalami reaksi adisi dimana cincinnya terputus. Sebagai contoh, dengan bromin, siklopropana menghasilkan 1,3-dibromopropana.

Reaksi ini masih bisa terjadi dengan adanya sinar biasa – tetapi reaksi substitusi juga terjadi pada kondisi ini.
Struktur cincin terputus karena siklopropana mengalami regangan cincin. Sudut-sudut ikatan dalam cincin menjadi 60° dan tidak normal lagi yaitu sekitar 109.5° ketika karbon membentuk empat ikatan tunggal.
Timpang tindih antara orbital-orbial atom dalam pembetukan ikatan C-C tidak lagi seperti pada keadaan normal, dan terjadi tolak-menolak yang cukup besar antara pasangan-pasangan elektron ikatan. Sistem akan menjadi lebih stabil jika cincin terputus.
Reaksi antara alkana dengan halogen disebut dengan reaksi "halogenasi radikal bebas". Atom hidrogen pada alkana akan secara bertahap digantikan oleh atom-atom halogen. Radikal bebas adalah senyawa yang ikut berpartisipasi dalam reaksi, biasanya menjadi campuran pada produk. Reaksi halogenasi merupakan reaksi eksotermik dan dapat menimbulkan ledakan.
Reaksi ini sangat penting pada industri untuk menghalogenasi hidrokarbon. Ada 3 tahap:
  • Inisiasi: radikal halogen terbentuk melalui homolisis. Biasanya, diperlukan energi dalam bentuk panas atau cahaya.
  • Reaksi rantai atau Propagasi: radikal halogen akan mengabstrak hidrogen dari alkana untuk membentuk radikal alkil.
  • Terminasi rantai: tahap dimana radikal-radikal bergabung.
Hasil eksperimen menunjukkan bahwa semua reaksi halogenasi bisa menghasilkan semua campuran isomer yang berarti mengindikasikan atom hidrogen rentan terhadap reaksi. Atom hidrogen sekunder dan tersier biasanya akan tergantikan karena stablitas radikal bebas sekunder dan tersier lebih baik. Contoh dapat dilihat pada monobrominasi propana:[4]


Monobrominasi propana
§Alkanadapatbereaksidenganhalogen (F2, Cl2, Br2, I2) menghasilkanalkilhalida.
§Urutanreaktifitas: F2> Cl2> Br2> I2
§ReaksidenganI2 berlangsungsangatlambat.
§ReaksialkanadenganCl2danBr2berlangsungtidakseberapacepatsehinggamudahdikendalikan.
§ReaksialkanadenganF2berlangsungsangatcepatsehinggasulitdikendalikan.

REAKSI PADA HALOGENASI 
1.InisiasiAtom klorinmemilikisatuelektronyang tidakberpasangan, danberlakusebagaisuaturadikalbebas.Pemecahanhomolisisterhadapmolekulklorinmenjadi2 atom klorin, yang disebabkanolehradiasibiru(diberisimbolhn)
Untukmemecahmolekulklorin(Cl2) menjadi2 atom klorin(Cl) diperlukanenergisebesar242 kJ/mol
•Energidarisatuphoton sinardapatdihitungdenganmenggunakanpersamaan:E= hv= 250 kJ per mol photondenganh = konstantaPlanckv = frekuensi
2.Propagasiberantai(2 tahap)
Ketikaradikalklorinbertumbukandenganmolekulmetana, makasatuatom hidrogenditarikdarimetana, sehinggadihasilkanHCldanradikalmetil.
 3.Terminasi
Rekombinasi radikal bebas
Rekombinasi2 radikalbebas:



Reaksi antara alkana dengan fluorin
Reaksi ini menimbulkan ledakan (eksplosif) bahkan pada suhu dingin dan ruang gelap, dan cenderung dihasilkan karbon dan hidrogen fluoride. Tidak ada yang istimewa pada reaksi ini. Sebagai contoh:

Reaksi antara alkana dengan iodin
Iodin tidak bereaksi dengan alkana – sekurang-kurangnya pada kondisi laboratorium yang normal.
Reaksi antara alkana dengan klorin atau bromin
Tidak ada reaksi yang terjadi dalam kondisi gelap (tanpa cahaya).
Jika terdapat cahaya, reaksi yang terjadi sedikit mirip dengan fluorin, yakni menghasilkan sebuah campuran karbon dan hidrogen halida. Keagresifan reaksi berkurang tajam semakin ke bawah golongan mulai dari fluorin sampai klorin sampai bromin.
Reaksi-reaksi yang menarik terjadi dengan adanya sinar ultraviolet (begitu juga sinar matahari). Reaksi-reaksi ini disebut reaksi fitokimia, dan terjadi pada suhu kamar.
Berikut kita akan melihat reaksi dengan klorin. Reaksi dengan bromin cukup mirip, hanya saja sedikit lebih lambat.







permasalahan : mengapa campuran alkana dan gas klor dan brom tidak bereaksi pada suhu rendah dan   keadaan yang gelap dan hanya bereaksi pada suhu tinggi dan keaadan terang ??? sedangkan fluorin dapat bereaksi dengan alkana walaupun pada suhu rendah dan keadaan gelap  sehingga dapat menimbulkan ledakan . Apa yang menyebabkan perbedaan tersebut ?